Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Oncol Res ; 25(2): 777-790, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30729412

RESUMO

This study aims to detect the abnormal growth of tissue in cervix region for diagnosis of cervical cancer using Pap test of patients. The proposed methodology classifies cervical cancer for pattern recognition either benign or malignant stages using shape and neuro-fuzzy based diagnostic model. In this experiment, firstly the authors segment Pap smear images of cervical cells using fuzzy c-means clustering algorithm and shape theory to classify them according to the presence of abnormality of the cells. Secondly the features extraction process is performed in the part of nucleus and cytoplasm on the squamous and glandular cells and the authors used input variables such as cytoplasm area (CA), cytoplasm circularity (CC), nucleus area (NA), nucleus circularity (NC), nucleus-cytoplasm ratio (NCR), and maximum nucleus brightness (MNB) in fuzzy tools and used fuzzy rules to evaluate the cervical cancer risk status as an output variable. The proposed neuro-fuzzy network system was developed for early detection of cervical cancer. A neural network was trained with 15-Pap image datasets where Levenberg-Marquardt(LM) a feed-forward back-propagation algorithm was used to get the status of the cervical cancer. Out of 15 samples database, 11 data set for training, 2 data set for validation and 2 data set for test were used in the ANN classification system. The presented fuzzy expert system(FES) successfully identified the presence of cervical cancer in the Pap smear images using the extracted features and the use of neuro-fuzzy system(NFS) for the identification of cervical cancer at the early stages and achieve a satisfactory performance with 100% accuracy.


Assuntos
Lógica Fuzzy , Modelos Teóricos , Reconhecimento Automatizado de Padrão/métodos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE Trans Syst Man Cybern B Cybern ; 34(2): 877-87, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15376836

RESUMO

Uncertainty management in dynamical systems is receiving attention in artificial intelligence, particularly in the fields of qualitative and model based reasoning. Fuzzy dynamical systems occupy a very important position in the class of uncertain systems. It is well established that the fuzzy dynamical systems represented by a set of fuzzy differential inclusions (FDI) are very convenient tools for modeling and simulation of various uncertain systems. In this paper, we discuss about the mathematical modeling of two very complex natural phenomena by means of FDIs. One of them belongs to the atmospheric cybernetics (the term has been used in a broad sense) of the genesis of a cyclonic storm (cyclogenesis), and the other belongs to the bio-medical cybernetics of the evolution of tumor in a human body. Since a discussion of the former already appears in a previous paper by the first author, here, we present very briefly a theoretical formalism of cyclone formation. On the other hand, we treat the latter system more elaborately. We solve the FDIs with the help of an algorithm developed in this paper to numerically simulate the mathematical models. From the simulation results thus obtained, we have drawn a number of interesting conclusions, which have been verified, and this vindicates the validity of our models.


Assuntos
Atmosfera , Cibernética/métodos , Desastres , Lógica Fuzzy , Modelos Biológicos , Neoplasias/patologia , Neoplasias/fisiopatologia , Algoritmos , Animais , Divisão Celular , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...